33 lines
1.5 KiB
Python
33 lines
1.5 KiB
Python
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
|
|
# Spack Project Developers. See the top-level COPYRIGHT file for details.
|
|
#
|
|
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
|
|
|
|
from spack.package import *
|
|
|
|
|
|
class RRspectra(RPackage):
|
|
"""Solvers for Large-Scale Eigenvalue and SVD Problems.
|
|
|
|
R interface to the 'Spectra' library <https://spectralib.org/> for
|
|
large-scale eigenvalue and SVD problems. It is typically used to compute a
|
|
few eigenvalues/vectors of an n by n matrix, e.g., the k largest
|
|
eigenvalues, which is usually more efficient than eigen() if k << n. This
|
|
package provides the 'eigs()' function that does the similar job as in
|
|
'Matlab', 'Octave', 'Python SciPy' and 'Julia'. It also provides the
|
|
'svds()' function to calculate the largest k singular values and
|
|
corresponding singular vectors of a real matrix. The matrix to be computed
|
|
on can be dense, sparse, or in the form of an operator defined by the
|
|
user."""
|
|
|
|
cran = "RSpectra"
|
|
|
|
version('0.16-1', sha256='cba5d3403d6a7d0e27abf6279fbfea6e0d0fe36b28c688bbadb8eafb3841329a')
|
|
version('0.16-0', sha256='aaf1cfc9ffe3a4c6684247899924e1c18306971dfef4bae1dc596a2fb42a64a9')
|
|
version('0.15-0', sha256='1ad5698201007044a0420cb10b7c48e94312a8a1d22b9d946d5de1c6743969a9')
|
|
|
|
depends_on('r@3.0.2:', type=('build', 'run'))
|
|
depends_on('r-matrix@1.1-0:', type=('build', 'run'))
|
|
depends_on('r-rcpp@0.11.5:', type=('build', 'run'))
|
|
depends_on('r-rcppeigen@0.3.3.3.0:', type=('build', 'run'))
|