spack/var/spack/repos/builtin/packages/py-dgl/package.py
Harmen Stoppels eef9939c21
Automated git version fixes (#39637)
Use full length commit sha instead of short prefixes, to improve
reproducibility (future clashes) and guard against compromised repos and
man in the middle attacks.

Abbreviated commit shas are expanded to full length, to guard against future
clashes on short hash. It also guards against compromised repos and
man in the middle attacks, where attackers can easily fabricate a malicious
commit with a shasum prefix collision.

Versions with just tags now also get a commit sha, which can later be used to
check for retagged commits.
2023-08-29 16:33:03 +02:00

171 lines
6.5 KiB
Python

# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
from spack.package import *
class PyDgl(CMakePackage, PythonExtension, CudaPackage):
"""Deep Graph Library (DGL).
DGL is an easy-to-use, high performance and scalable Python package for
deep learning on graphs. DGL is framework agnostic, meaning if a deep graph
model is a component of an end-to-end application, the rest of the logics
can be implemented in any major frameworks, such as PyTorch, Apache MXNet
or TensorFlow."""
homepage = "https://www.dgl.ai/"
git = "https://github.com/dmlc/dgl.git"
maintainers("adamjstewart", "meyersbs")
version("master", branch="master", submodules=True)
version(
"1.0.1", tag="1.0.1", commit="cc2e9933f309f585fae90965ab61ad11ac1eecd5", submodules=True
)
version(
"0.4.3", tag="0.4.3", commit="e1d90f9b5eeee7359a6b4f5edca7473a497984ba", submodules=True
)
version(
"0.4.2", tag="0.4.2", commit="55e056fbae8f25f3da4aab0a0d864d72c2a445ff", submodules=True
)
variant("cuda", default=True, description="Build with CUDA")
variant("openmp", default=True, description="Build with OpenMP")
variant(
"backend",
default="pytorch",
description="Default backend",
values=["pytorch", "mxnet", "tensorflow"],
multi=False,
)
depends_on("cmake@3.5:", type="build")
depends_on("llvm-openmp", when="%apple-clang +openmp")
# Python dependencies
# See python/setup.py
extends("python")
depends_on("python@3.5:", type=("build", "run"))
depends_on("py-pip", type="build")
depends_on("py-wheel", type="build")
depends_on("py-setuptools", type="build")
depends_on("py-cython", type="build")
depends_on("py-numpy@1.14.0:", type=("build", "run"))
depends_on("py-scipy@1.1.0:", type=("build", "run"))
depends_on("py-networkx@2.1:", type=("build", "run"))
depends_on("py-requests@2.19.0:", when="@0.4.3:", type=("build", "run"))
depends_on("py-tqdm", when="@1.0.1:", type=("build", "run"))
depends_on("py-psutil@5.8.0:", when="@1.0.1:", type=("build", "run"))
# Backends
# See https://docs.dgl.ai/install/index.html#working-with-different-backends
depends_on("py-torch@1.12.0:", when="@1.0.1: backend=pytorch", type="run")
depends_on("py-torch@1.2.0:", when="@0.4.3: backend=pytorch", type="run")
depends_on("py-torch@0.4.1:", when="backend=pytorch", type="run")
depends_on("mxnet@1.6.0:", when="@1.0.1: backend=mxnet", type="run")
depends_on("mxnet@1.5.1:", when="@0.4.3: backend=mxnet", type="run")
depends_on("mxnet@1.5.0:", when="backend=mxnet", type="run")
depends_on("py-tensorflow@2.3:", when="@1.0.1: backend=tensorflow", type="run")
depends_on("py-tensorflow@2.1:", when="@0.4.3: backend=tensorflow", type="run")
depends_on("py-tensorflow@2.0:", when="backend=tensorflow", type="run")
# Cuda
# See https://github.com/dmlc/dgl/issues/3083
depends_on("cuda@:10", when="@:0.4 +cuda", type=("build", "run"))
# From error: "Your installed Caffe2 version uses cuDNN but I cannot find the
# cuDNN libraries. Please set the proper cuDNN prefixes and / or install cuDNN."
depends_on("cudnn", when="+cuda", type=("build", "run"))
patch(
"https://patch-diff.githubusercontent.com/raw/dmlc/dgl/pull/5434.patch?full_index=1",
sha256="8c5f14784637a9bb3dd55e6104715d4a35b4e6594c99884aa19e67bc0544e91a",
when="@1.0.1",
)
build_directory = "build"
# https://docs.dgl.ai/install/index.html#install-from-source
def cmake_args(self):
args = []
if "+cuda" in self.spec:
args.append("-DUSE_CUDA=ON")
# Prevent defaulting to old compute_ and sm_ despite defining cuda_arch
args.append("-DCUDA_ARCH_NAME=Manual")
cuda_arch_list = " ".join(list(self.spec.variants["cuda_arch"].value))
args.append("-DCUDA_ARCH_BIN={0}".format(cuda_arch_list))
args.append("_DCUDA_ARCH_PTX={0}".format(cuda_arch_list))
else:
args.append("-DUSE_CUDA=OFF")
if "+openmp" in self.spec:
args.append("-DUSE_OPENMP=ON")
if self.spec.satisfies("%apple-clang"):
args.extend(
[
"-DOpenMP_CXX_FLAGS=" + self.spec["llvm-openmp"].headers.include_flags,
"-DOpenMP_CXX_LIB_NAMES=" + self.spec["llvm-openmp"].libs.names[0],
"-DOpenMP_C_FLAGS=" + self.spec["llvm-openmp"].headers.include_flags,
"-DOpenMP_C_LIB_NAMES=" + self.spec["llvm-openmp"].libs.names[0],
"-DOpenMP_omp_LIBRARY=" + self.spec["llvm-openmp"].libs[0],
]
)
else:
args.append("-DUSE_OPENMP=OFF")
if self.run_tests:
args.append("-DBUILD_CPP_TEST=ON")
else:
args.append("-DBUILD_CPP_TEST=OFF")
return args
def install(self, spec, prefix):
with working_dir("python"):
args = std_pip_args + ["--prefix=" + prefix, "."]
pip(*args)
# Older versions do not install correctly
if self.spec.satisfies("@:0.4.3"):
# Work around installation bug: https://github.com/dmlc/dgl/issues/1379
install_tree(prefix.dgl, prefix.lib)
def setup_run_environment(self, env):
# https://docs.dgl.ai/install/backend.html
backend = self.spec.variants["backend"].value
env.set("DGLBACKEND", backend)
@property
def import_modules(self):
modules = [
"dgl",
"dgl.nn",
"dgl.runtime",
"dgl.backend",
"dgl.function",
"dgl.contrib",
"dgl._ffi",
"dgl.data",
"dgl.runtime.ir",
"dgl.backend.numpy",
"dgl.contrib.sampling",
"dgl._ffi._cy2",
"dgl._ffi._cy3",
"dgl._ffi._ctypes",
]
if "backend=pytorch" in self.spec:
modules.extend(["dgl.nn.pytorch", "dgl.nn.pytorch.conv", "dgl.backend.pytorch"])
elif "backend=mxnet" in self.spec:
modules.extend(["dgl.nn.mxnet", "dgl.nn.mxnet.conv", "dgl.backend.mxnet"])
elif "backend=tensorflow" in self.spec:
modules.extend(
["dgl.nn.tensorflow", "dgl.nn.tensorflow.conv", "dgl.backend.tensorflow"]
)
return modules