tetra_vz/tetra_vz.h
2022-02-19 10:51:15 +08:00

244 lines
5.2 KiB
C

#ifndef _TETRA_VZ_H
#define _TETRA_VZ_H
#include "cmath"
#define ZERO 1e-20
#define G0 6.67408e-11
/**
* Define the point structure in 3D space
*/
struct point3d
{
double x, y, z;
double module() const; // module
point3d normal() const; // normal vector
};
double point3d::module() const
{
return sqrt(x*x + y*y + z*z);
}
point3d point3d::normal() const
{
point3d nor_v;
double length = module();
if (length <= ZERO)
{
nor_v.x = nor_v.y = nor_v.z = 0.0;
}
else
{
nor_v.x = x/length;
nor_v.y = y/length;
nor_v.z = z/length;
}
return nor_v;
}
point3d operator+(const point3d &a, const point3d &b) // Add
{
point3d m;
m.x = a.x+b.x;
m.y = a.y+b.y;
m.z = a.z+b.z;
return m;
}
point3d operator-(const point3d &a, const point3d &b) // Minus
{
point3d m;
m.x = a.x-b.x;
m.y = a.y-b.y;
m.z = a.z-b.z;
return m;
}
point3d operator*(double scale, const point3d &b) // Multiply
{
point3d m;
m.x = scale*b.x;
m.y = scale*b.y;
m.z = scale*b.z;
return m;
}
double dot(const point3d &a, const point3d &b) // Dot
{
return a.x*b.x+a.y*b.y+a.z*b.z;
}
double distance(const point3d &a, const point3d &b) // Distance
{
return (a - b).module();
}
point3d cross(const point3d &a, const point3d &b) // Cross
{
point3d v;
v.x = a.y*b.z-a.z*b.y;
v.y = a.z*b.x-a.x*b.z;
v.z = a.x*b.y-a.y*b.x;
if (fabs(v.x) <= ZERO) v.x = 0;
if (fabs(v.y) <= ZERO) v.y = 0;
if (fabs(v.z) <= ZERO) v.z = 0;
return v;
}
/**
* Define the tensor structure
*/
struct tensor
{
double val[3][3];
};
tensor kron(const point3d &a, const point3d &b) // tensor product
{
tensor t;
t.val[0][0]=a.x*b.x; t.val[0][1]=a.x*b.y; t.val[0][2]=a.x*b.z;
t.val[1][0]=a.y*b.x; t.val[1][1]=a.y*b.y; t.val[1][2]=a.y*b.z;
t.val[2][0]=a.z*b.x; t.val[2][1]=a.z*b.y; t.val[2][2]=a.z*b.z;
return t;
}
/**
* Define the tetrahedron structure
*
* regular type of tetrahedron
* 3
* /|\
* / | \ y
* z / | \ /
* | / 1 \
* | / / \ \
* |/ / \ \
* 0-------------2----> x
*
* triangle list (anti-clockwise)
* 0 1 2
* 0 2 3
* 0 3 1
* 1 3 2
*
* inverse type of tetrahedron
* 3
* /|\
* / | \ y
* z / | \ /
* | / 2 \
* | / / \ \
* |/ / \ \
* 0-------------1----> x
*
* triangle list (anti-clockwise)
* 0 1 3
* 0 2 1
* 0 3 2
* 1 2 3
*/
static int regular_order[12] = {0,1,2,0,2,3,0,3,1,1,3,2};
static int inverse_order[12] = {0,1,3,0,2,1,0,3,2,1,2,3};
struct tetrahedron
{
bool regular_type;
point3d *vec_ptr[4];
tensor F[4];
tensor E[12];
double rho;
double edglen[12];
void initialize_tensors();
};
void tetrahedron::initialize_tensors()
{
point3d v1, v2, v3, nf, ne;
v1 = *vec_ptr[1] - *vec_ptr[0];
v2 = *vec_ptr[2] - *vec_ptr[0];
v3 = *vec_ptr[3] - *vec_ptr[0];
int *triangle_order;
if (dot(v3, cross(v1, v2)) <= 0.0)
{
regular_type = true;
triangle_order = regular_order;
}
else
{
regular_type = false;
triangle_order = inverse_order;
}
for (int i = 0; i < 4; i++)
{
v1 = *vec_ptr[triangle_order[1+i*3]] - *vec_ptr[triangle_order[i*3]];
v2 = *vec_ptr[triangle_order[2+i*3]] - *vec_ptr[triangle_order[i*3]];
nf = cross(v1, v2).normal();
F[i] = kron(nf, nf);
for (int j = 0; j < 3; j++)
{
edglen[j+i*3] = distance(*vec_ptr[triangle_order[j+i*3]], *vec_ptr[triangle_order[(j+1)%3+i*3]]);
v3 = *vec_ptr[triangle_order[(j+1)%3+i*3]] - *vec_ptr[triangle_order[j+i*3]];
ne = cross(v3, nf).normal();
E[j+i*3] = kron(nf, ne);
}
}
return;
}
double tetra_vz(tetrahedron *ele_ptr, point3d *op_ptr)
{
int f,e;
double Le,wf;
double dv1,dv2;
double face_sum,edge_sum;
point3d re;
point3d r_ijk[3];
double L_ijk[3];
int *triangle_order;
if (ele_ptr->regular_type)
triangle_order = regular_order;
else
triangle_order = inverse_order;
face_sum = edge_sum = 0.0;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *ele_ptr->vec_ptr[triangle_order[3*f]] - *op_ptr;
r_ijk[1] = *ele_ptr->vec_ptr[triangle_order[3*f+1]] - *op_ptr;
r_ijk[2] = *ele_ptr->vec_ptr[triangle_order[3*f+2]] - *op_ptr;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_sum += (ele_ptr->F[f].val[2][0]*r_ijk[0].x + ele_ptr->F[f].val[2][1]*r_ijk[0].y + ele_ptr->F[f].val[2][2]*r_ijk[0].z) * wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*ele_ptr->vec_ptr[triangle_order[e+3*f]], *op_ptr);
dv2 = distance(*ele_ptr->vec_ptr[triangle_order[(e+1)%3+3*f]], *op_ptr);
re = 0.5*(*ele_ptr->vec_ptr[triangle_order[e+3*f]] + *ele_ptr->vec_ptr[triangle_order[(e+1)%3+3*f]]) - *op_ptr;
Le = log((dv1+dv2+ele_ptr->edglen[e+3*f])/(dv1+dv2-ele_ptr->edglen[e+3*f]));
edge_sum += (ele_ptr->E[e+3*f].val[2][0]*re.x + ele_ptr->E[e+3*f].val[2][1]*re.y + ele_ptr->E[e+3*f].val[2][2]*re.z) * Le;
}
}
return 1.0e+8*G0*(ele_ptr->rho)*(edge_sum - face_sum);
}
#endif // _TETRA_VZ_H