244 lines
5.2 KiB
C
244 lines
5.2 KiB
C
#ifndef _TETRA_VZ_H
|
|
#define _TETRA_VZ_H
|
|
|
|
#include "cmath"
|
|
|
|
#define ZERO 1e-20
|
|
#define G0 6.67408e-11
|
|
|
|
/**
|
|
* Define the point structure in 3D space
|
|
*/
|
|
|
|
struct point3d
|
|
{
|
|
double x, y, z;
|
|
double module() const; // module
|
|
point3d normal() const; // normal vector
|
|
};
|
|
|
|
double point3d::module() const
|
|
{
|
|
return sqrt(x*x + y*y + z*z);
|
|
}
|
|
|
|
point3d point3d::normal() const
|
|
{
|
|
point3d nor_v;
|
|
double length = module();
|
|
if (length <= ZERO)
|
|
{
|
|
nor_v.x = nor_v.y = nor_v.z = 0.0;
|
|
}
|
|
else
|
|
{
|
|
nor_v.x = x/length;
|
|
nor_v.y = y/length;
|
|
nor_v.z = z/length;
|
|
}
|
|
return nor_v;
|
|
}
|
|
|
|
point3d operator+(const point3d &a, const point3d &b) // Add
|
|
{
|
|
point3d m;
|
|
m.x = a.x+b.x;
|
|
m.y = a.y+b.y;
|
|
m.z = a.z+b.z;
|
|
return m;
|
|
}
|
|
|
|
point3d operator-(const point3d &a, const point3d &b) // Minus
|
|
{
|
|
point3d m;
|
|
m.x = a.x-b.x;
|
|
m.y = a.y-b.y;
|
|
m.z = a.z-b.z;
|
|
return m;
|
|
}
|
|
|
|
point3d operator*(double scale, const point3d &b) // Multiply
|
|
{
|
|
point3d m;
|
|
m.x = scale*b.x;
|
|
m.y = scale*b.y;
|
|
m.z = scale*b.z;
|
|
return m;
|
|
}
|
|
|
|
double dot(const point3d &a, const point3d &b) // Dot
|
|
{
|
|
return a.x*b.x+a.y*b.y+a.z*b.z;
|
|
}
|
|
|
|
double distance(const point3d &a, const point3d &b) // Distance
|
|
{
|
|
return (a - b).module();
|
|
}
|
|
|
|
point3d cross(const point3d &a, const point3d &b) // Cross
|
|
{
|
|
point3d v;
|
|
v.x = a.y*b.z-a.z*b.y;
|
|
v.y = a.z*b.x-a.x*b.z;
|
|
v.z = a.x*b.y-a.y*b.x;
|
|
if (fabs(v.x) <= ZERO) v.x = 0;
|
|
if (fabs(v.y) <= ZERO) v.y = 0;
|
|
if (fabs(v.z) <= ZERO) v.z = 0;
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* Define the tensor structure
|
|
*/
|
|
|
|
struct tensor
|
|
{
|
|
double val[3][3];
|
|
};
|
|
|
|
tensor kron(const point3d &a, const point3d &b) // tensor product
|
|
{
|
|
tensor t;
|
|
t.val[0][0]=a.x*b.x; t.val[0][1]=a.x*b.y; t.val[0][2]=a.x*b.z;
|
|
t.val[1][0]=a.y*b.x; t.val[1][1]=a.y*b.y; t.val[1][2]=a.y*b.z;
|
|
t.val[2][0]=a.z*b.x; t.val[2][1]=a.z*b.y; t.val[2][2]=a.z*b.z;
|
|
return t;
|
|
}
|
|
|
|
/**
|
|
* Define the tetrahedron structure
|
|
*
|
|
* regular type of tetrahedron
|
|
* 3
|
|
* /|\
|
|
* / | \ y
|
|
* z / | \ /
|
|
* | / 1 \
|
|
* | / / \ \
|
|
* |/ / \ \
|
|
* 0-------------2----> x
|
|
*
|
|
* triangle list (anti-clockwise)
|
|
* 0 1 2
|
|
* 0 2 3
|
|
* 0 3 1
|
|
* 1 3 2
|
|
*
|
|
* inverse type of tetrahedron
|
|
* 3
|
|
* /|\
|
|
* / | \ y
|
|
* z / | \ /
|
|
* | / 2 \
|
|
* | / / \ \
|
|
* |/ / \ \
|
|
* 0-------------1----> x
|
|
*
|
|
* triangle list (anti-clockwise)
|
|
* 0 1 3
|
|
* 0 2 1
|
|
* 0 3 2
|
|
* 1 2 3
|
|
*/
|
|
static int regular_order[12] = {0,1,2,0,2,3,0,3,1,1,3,2};
|
|
static int inverse_order[12] = {0,1,3,0,2,1,0,3,2,1,2,3};
|
|
|
|
struct tetrahedron
|
|
{
|
|
bool regular_type;
|
|
point3d *vec_ptr[4];
|
|
tensor F[4];
|
|
tensor E[12];
|
|
double rho;
|
|
double edglen[12];
|
|
void initialize_tensors();
|
|
};
|
|
|
|
void tetrahedron::initialize_tensors()
|
|
{
|
|
point3d v1, v2, v3, nf, ne;
|
|
|
|
v1 = *vec_ptr[1] - *vec_ptr[0];
|
|
v2 = *vec_ptr[2] - *vec_ptr[0];
|
|
v3 = *vec_ptr[3] - *vec_ptr[0];
|
|
|
|
int *triangle_order;
|
|
if (dot(v3, cross(v1, v2)) <= 0.0)
|
|
{
|
|
regular_type = true;
|
|
triangle_order = regular_order;
|
|
}
|
|
else
|
|
{
|
|
regular_type = false;
|
|
triangle_order = inverse_order;
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
v1 = *vec_ptr[triangle_order[1+i*3]] - *vec_ptr[triangle_order[i*3]];
|
|
v2 = *vec_ptr[triangle_order[2+i*3]] - *vec_ptr[triangle_order[i*3]];
|
|
nf = cross(v1, v2).normal();
|
|
F[i] = kron(nf, nf);
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
edglen[j+i*3] = distance(*vec_ptr[triangle_order[j+i*3]], *vec_ptr[triangle_order[(j+1)%3+i*3]]);
|
|
|
|
v3 = *vec_ptr[triangle_order[(j+1)%3+i*3]] - *vec_ptr[triangle_order[j+i*3]];
|
|
ne = cross(v3, nf).normal();
|
|
E[j+i*3] = kron(nf, ne);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
double tetra_vz(tetrahedron *ele_ptr, point3d *op_ptr)
|
|
{
|
|
int f,e;
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
double face_sum,edge_sum;
|
|
point3d re;
|
|
point3d r_ijk[3];
|
|
double L_ijk[3];
|
|
|
|
int *triangle_order;
|
|
if (ele_ptr->regular_type)
|
|
triangle_order = regular_order;
|
|
else
|
|
triangle_order = inverse_order;
|
|
|
|
face_sum = edge_sum = 0.0;
|
|
for (f = 0; f < 4; f++)
|
|
{
|
|
r_ijk[0] = *ele_ptr->vec_ptr[triangle_order[3*f]] - *op_ptr;
|
|
r_ijk[1] = *ele_ptr->vec_ptr[triangle_order[3*f+1]] - *op_ptr;
|
|
r_ijk[2] = *ele_ptr->vec_ptr[triangle_order[3*f+2]] - *op_ptr;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_sum += (ele_ptr->F[f].val[2][0]*r_ijk[0].x + ele_ptr->F[f].val[2][1]*r_ijk[0].y + ele_ptr->F[f].val[2][2]*r_ijk[0].z) * wf;
|
|
|
|
for (e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*ele_ptr->vec_ptr[triangle_order[e+3*f]], *op_ptr);
|
|
dv2 = distance(*ele_ptr->vec_ptr[triangle_order[(e+1)%3+3*f]], *op_ptr);
|
|
|
|
re = 0.5*(*ele_ptr->vec_ptr[triangle_order[e+3*f]] + *ele_ptr->vec_ptr[triangle_order[(e+1)%3+3*f]]) - *op_ptr;
|
|
Le = log((dv1+dv2+ele_ptr->edglen[e+3*f])/(dv1+dv2-ele_ptr->edglen[e+3*f]));
|
|
|
|
edge_sum += (ele_ptr->E[e+3*f].val[2][0]*re.x + ele_ptr->E[e+3*f].val[2][1]*re.y + ele_ptr->E[e+3*f].val[2][2]*re.z) * Le;
|
|
}
|
|
}
|
|
return 1.0e+8*G0*(ele_ptr->rho)*(edge_sum - face_sum);
|
|
}
|
|
|
|
#endif // _TETRA_VZ_H
|