wavelet1d/demo/imagedemo2.cpp

290 lines
8.1 KiB
C++
Raw Normal View History

2011-04-27 09:26:35 +08:00
//============================================================================
// Name : imagedemo2.cpp
// Author : Rafat Hussain
// Version :
// Copyright :
// Description : Image Approximation
//============================================================================
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <cmath>
#include <algorithm>
#include "cv.h"
#include "highgui.h"
#include "cxcore.h"
#include "wavelet.h"
using namespace std;
using namespace cv;
void findthresh(vector<double> &vector1, int N, double& t){
sort(vector1.begin(), vector1.end(), greater<double>());
t = vector1.at(N-1);
}
void* maxval(vector<vector<double> > &arr, double &max){
max = 0;
for (unsigned int i =0; i < arr.size(); i++) {
for (unsigned int j =0; j < arr[0].size(); j++) {
if (max <= arr[i][j]){
max = arr[i][j];
}
}
}
return 0;
}
void* minval(vector<vector<double> > &arr, double &min){
min = 10000;
for (unsigned int i =0; i < arr.size(); i++) {
for (unsigned int j =0; j < arr[0].size(); j++) {
if (min >= arr[i][j]){
min = arr[i][j];
}
}
}
return 0;
}
int main() {
IplImage* img = cvLoadImage("lena512.bmp");
if (!img){
cout << " Can't read Image. Try Different Format." << endl;
exit(1);
}
int height, width;
height = img->height;
width = img->width;
int nc = img->nChannels;
// uchar* ptr2 =(uchar*) img->imageData;
int pix_depth = img->depth;
CvSize size;
size.width =width;
size.height=height;
cout << "depth" << pix_depth << "Channels" << nc << endl;
cvNamedWindow("Original Image", CV_WINDOW_AUTOSIZE);
cvShowImage("Original Image", img);
cvWaitKey();
cvDestroyWindow("Original Image");
int rows =(int) height;
int cols =(int) width;
Mat matimg(img);
vector<vector<double> > vec1(rows, vector<double>(cols));
int k =1;
for (int i=0; i < rows; i++) {
for (int j =0; j < cols; j++){
unsigned char temp;
temp = ((uchar*) matimg.data + i * matimg.step)[j * matimg.elemSize() + k ];
vec1[i][j] = (double) temp;
}
}
int rr1,cc1;
string nm = "db3";
// Finding DWT output dimensions as the DWT output is zeropadded
dwt_output_dim(vec1, rr1, cc1 );
int J = 6;
vector<double> flag;
vector<vector<double> > dwt_output(rr1, vector<double>(cc1));
cout << rr1 << cc1 << "size of op" << endl;
// Computing 2d DWT ( vec1 is the signal while dwt_output is the DWT output)
dwt_2d(vec1, J, nm, dwt_output,flag );
cout << "dwt size" << dwt_output.size() << dwt_output[0].size() << endl;
double max,min;
maxval(dwt_output,max);
minval(dwt_output,min);
cout << "maxval" << max << " minval" << min << endl;
vector<vector<double> > dwt_coef1(rr1, vector<double>(cc1));
vector<vector<double> > dwt_coef2(rr1, vector<double>(cc1));
// Storing dwt_output for two different computations based on
// different approximation values
dwt_coef1 = dwt_output;
dwt_coef2 = dwt_output;
//Displaying Scaled Image
// Creating Image in OPENCV
IplImage *cvImg; // image used for output
CvSize imgSize; // size of output image
imgSize.width = cc1;
imgSize.height = rr1;
cvImg = cvCreateImage( imgSize, 8, 1 );
// Setting coefficients of created image to the scaled DWT output values
for (int i = 0; i < imgSize.height; i++ ) {
for (int j = 0; j < imgSize.width; j++ ){
if ( dwt_output[i][j] <= 0.0){
dwt_output[i][j] = 0.0;
}
if ( i <= (imgSize.height/pow(2.0,double(J))) && j <= (imgSize.width/pow(2.0,double(J))) ) {
((uchar*)(cvImg->imageData + cvImg->widthStep*i))[j] =
(char) ( (dwt_output[i][j] / max) * 255.0);
} else {
((uchar*)(cvImg->imageData + cvImg->widthStep*i))[j] =
(char) (dwt_output[i][j]) ;
}
}
}
// IMPORTANT -- dwt_output value has been modified above.
cvNamedWindow( "DWT Image", 1 ); // creation of a visualisation window
cvShowImage( "DWT Image", cvImg ); // image visualisation
cvWaitKey();
cvDestroyWindow("DWT Image");
// Case 1 : Only 10% of the largest coefficients are considered
// Total elements in the original image is rows * cols
int n_coef1= int (( rows * cols)/ 10);
// Finding Threshold Value corresponding to n_coef1
vector<double> temp1;
cout << "size: " << (int) temp1.size() << "\n";
cout << "capacity: " << (int) temp1.capacity() << "\n";
cout << "max_size: " << (int) temp1.max_size() << "\n";
for (int i =0; i < rr1; i++) {
for (int j = 0; j < cc1; j++){
double tempval = abs(dwt_coef1[i][j]);
temp1.push_back(tempval);
}
}
double thresh1= 0.0;
findthresh(temp1,n_coef1,thresh1);
ofstream temp("temp.txt");
for (int i =0; i < rows * cols; i++){
temp << temp1[i] << " " ;
}
// Reset coeffficients value depending on threshold value
for (int i =0; i < rr1; i++) {
for (int j = 0; j < cc1; j++){
double temp = abs(dwt_coef1[i][j]);
if (temp < thresh1){
dwt_coef1[i][j] = 0.0;
}
}
}
// Finding IDWT
vector<vector<double> > final(rr1, vector<double>(cc1));
idwt_2d(dwt_coef1,flag, nm ,final);
// Removing Zeropadding
zero_remove(vec1,final);
//Displaying Reconstructed Image
IplImage *dvImg;
CvSize dvSize; // size of output image
dvSize.width = final[0].size();
dvSize.height = final.size();
dvImg = cvCreateImage( dvSize, 8, 1 );
for (int i = 0; i < dvSize.height; i++ )
for (int j = 0; j < dvSize.width; j++ )
((uchar*)(dvImg->imageData + dvImg->widthStep*i))[j] =
(char) (final[i][j]) ;
cvNamedWindow( "10% Coeff Reconstructed Image", 1 ); // creation of a visualisation window
cvShowImage( "10% Coeff Reconstructed Image", dvImg ); // image visualisation
cvWaitKey();
cvDestroyWindow("10% Coeff Reconstructed Image");
// Case 2 : Only 2% of the largest coefficients are considered
// Total elements in the original image is rows * cols
int n_coef2= int (( rows * cols) / 50);
// Finding Threshold Value corresponding to n_coef1
vector<double> temp2;
for (int i =0; i < rr1; i++) {
for (int j = 0; j < cc1; j++){
double tempval = abs(dwt_coef2[i][j]);
temp2.push_back(tempval);
}
}
double thresh2= 0.0;
findthresh(temp2,n_coef2,thresh2);
// Reset coeffficients value depending on threshold value
for (int i =0; i < rr1; i++) {
for (int j = 0; j < cc1; j++){
double temp = abs(dwt_coef2[i][j]);
if (temp < thresh2){
dwt_coef2[i][j] = 0.0;
}
}
}
// Finding IDWT
vector<vector<double> > final2(rr1, vector<double>(cc1));
idwt_2d(dwt_coef2,flag, nm ,final2);
// Removing Zeropadding
zero_remove(vec1,final2);
//Displaying Reconstructed Image
IplImage *dvImg2;
CvSize dvSize2; // size of output image
dvSize2.width = final2[0].size();
dvSize2.height = final2.size();
dvImg2 = cvCreateImage( dvSize2, 8, 1 );
for (int i = 0; i < dvSize2.height; i++ )
for (int j = 0; j < dvSize2.width; j++ )
((uchar*)(dvImg2->imageData + dvImg2->widthStep*i))[j] =
(char) (final2[i][j]) ;
cvNamedWindow( "2% Coeff Reconstructed Image", 1 ); // creation of a visualisation window
cvShowImage( "2% Coeff Reconstructed Image", dvImg2 ); // image visualisation
cvWaitKey();
cvDestroyWindow("2% Coeff Reconstructed Image");
cout << thresh1 << " " << thresh2 << endl;
return 0;
}