wavelet1d/new2DAppx.md
2015-03-12 23:31:45 -04:00

361 lines
12 KiB
Markdown

# Image Approximation #
_Note_
1. dwt\_2d and dwt\_2d\_sym functions are interchangeable in the following code as they take the same arguments. You may have to make some trivial modifications due to different sized output coeffficients.
2. Please make sure that right header file is included. Following sample program links to wavelet2s.h which is the header for static libraries. wavelet2d.h must be included for shared libraries.
3. I'm using [OPENCV](http://opencv.willowgarage.com/wiki/) to handle images as i already use OPENCV for other image processing work. You may want to use some simpler image libraries as OPENCV is a full image processing suite and is very bulky or you can just use 2D matrices/build your own image classes. Regardless, DWT/IDWT operations are more important than the choice of libraries.
[Sample Code](http://code.google.com/p/wavelet1d/source/browse/trunk/wavelet2d/demo/imagedemo2.cpp)
```
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <complex>
#include <cmath>
#include <algorithm>
#include "wavelet2s.h"
#include "cv.h"
#include "highgui.h"
#include "cxcore.h"
using namespace std;
using namespace cv;
void findthresh(vector<double> &vector1, int N, double& t){
sort(vector1.begin(), vector1.end(), greater<double>());
t = vector1.at(N-1);
}
void* maxval(vector<vector<double> > &arr, double &max){
max = 0;
for (unsigned int i =0; i < arr.size(); i++) {
for (unsigned int j =0; j < arr[0].size(); j++) {
if (max <= arr[i][j]){
max = arr[i][j];
}
}
}
return 0;
}
void* maxval1(vector<double> &arr, double &max){
max = 0;
for (unsigned int i =0; i < arr.size(); i++) {
if (max <= arr[i]){
max = arr[i];
}
}
return 0;
}
int main() {
IplImage* img = cvLoadImage("lena512.bmp");
if (!img){
cout << " Can't read Image. Try Different Format." << endl;
exit(1);
}
int height, width;
height = img->height;
width = img->width;
int nc = img->nChannels;
// uchar* ptr2 =(uchar*) img->imageData;
int pix_depth = img->depth;
CvSize size;
size.width =width;
size.height=height;
cout << "depth" << pix_depth << "Channels" << nc << endl;
cvNamedWindow("Original Image", CV_WINDOW_AUTOSIZE);
cvShowImage("Original Image", img);
cvWaitKey();
cvDestroyWindow("Original Image");
cvSaveImage("orig.bmp",img);
int rows =(int) height;
int cols =(int) width;
Mat matimg(img);
vector<vector<double> > vec1(rows, vector<double>(cols));
int k =1;
for (int i=0; i < rows; i++) {
for (int j =0; j < cols; j++){
unsigned char temp;
temp = ((uchar*) matimg.data + i * matimg.step)[j * matimg.elemSize() + k ];
vec1[i][j] = (double) temp;
}
}
string nm = "db2";
vector<double> l1,h1,l2,h2;
filtcoef(nm,l1,h1,l2,h2);
// unsigned int lf=l1.size();
// int rows_n =(int) (rows+ J*(lf-1));
// int cols_n =(int) (cols + J * ( lf -1));
// Finding 2D DWT Transform of the image using symetric extension algorithm
// Extension is set to 0 (eg., int e = 0)
vector<int> length;
vector<double> output,flag;
int J =6;
dwt_2d(vec1,J,nm,output,flag,length);
double max;
vector<int> length2;
// This algorithm computes DWT of image of any given size. Together with convolution and
// subsampling operations it is clear that subsampled images are of different length than
// dyadic length images. In order to compute the "effective" size of DWT we do additional
// calculations.
dwt_output_dim_sym(length,length2,J);
// length2 is gives the integer vector that contains the size of subimages that will
// combine to form the displayed output image. The last two entries of length2 gives the
// size of DWT ( rows_n by cols_n)
int siz = length2.size();
int rows_n=length2[siz-2];
int cols_n = length2[siz-1];
vector<vector< double> > dwtdisp(rows_n, vector<double>(cols_n));
dispDWT(output,dwtdisp, length ,length2, J);
// dispDWT returns the 2D object dwtdisp which will be displayed using OPENCV's image
// handling functions
vector<vector<double> > dwt_output= dwtdisp;
// Storing the DWT coefficients in two different vectors that will be used to approximate
// Image with two different sets of chosen coefficients.
vector<double> dwt_coef1;
vector<double> dwt_coef2;
dwt_coef1 = output;
dwt_coef2 = output;
maxval(dwt_output,max);// max value is needed to take care of overflow which happens because
// of convolution operations performed on unsigned 8 bit images
//Displaying Scaled Image
// Creating Image in OPENCV
IplImage *cvImg; // image used for output
CvSize imgSize; // size of output image
imgSize.width = cols_n;
imgSize.height = rows_n;
cvImg = cvCreateImage( imgSize, 8, 1 );
// dwt_hold is created to hold the dwt output as further operations need to be
// carried out on dwt_output in order to display scaled images.
vector<vector<double> > dwt_hold(rows_n, vector<double>( cols_n));
dwt_hold = dwt_output;
// Setting coefficients of created image to the scaled DWT output values
for (int i = 0; i < imgSize.height; i++ ) {
for (int j = 0; j < imgSize.width; j++ ){
if ( dwt_output[i][j] <= 0.0){
dwt_output[i][j] = 0.0;
}
if ( i <= (length2[0]) && j <= (length2[1]) ) {
((uchar*)(cvImg->imageData + cvImg->widthStep*i))[j] =
(char) ( (dwt_output[i][j] / max) * 255.0);
} else {
((uchar*)(cvImg->imageData + cvImg->widthStep*i))[j] =
(char) (dwt_output[i][j]) ;
}
}
}
cvNamedWindow( "DWT Image", 1 ); // creation of a visualisation window
cvShowImage( "DWT Image", cvImg ); // image visualisation
cvWaitKey();
cvDestroyWindow("DWT Image");
cvSaveImage("dwt.bmp",cvImg);
// Case 1 : Only 10% of the largest coefficients are considered
// Output is the 1D DWT vector
int n_coef1= int (output.size()/ 10);
cout << n_coef1 << endl;
// Finding Threshold Value corresponding to n_coef1
vector<double> temp1;
cout << "size: " << (int) temp1.size() << "\n";
cout << "capacity: " << (int) temp1.capacity() << "\n";
cout << "max_size: " << (int) temp1.max_size() << "\n";
for (unsigned int i =0; i < dwt_coef1.size(); i++) {
double tempval = abs(dwt_coef1[i]);
temp1.push_back(tempval);
}
double thresh1= 0.0;
findthresh(temp1,n_coef1,thresh1);
cout << "thresh" << thresh1 << endl;
ofstream temp("temp.txt");
for (unsigned int i =0; i < temp1.size(); i++){
temp << temp1[i] << " " ;
}
// Reset coeffficients value depending on threshold value
for (unsigned int i =0; i < dwt_coef1.size(); i++) {
double temp = abs(dwt_coef1[i]);
if (temp < thresh1){
dwt_coef1.at(i)= 0.0;
}
}
// Finding IDWT
vector<vector<double> > idwt_output(rows, vector<double>(cols));
idwt_2d( dwt_coef1,flag, nm, idwt_output,length);
double max1;
maxval(idwt_output,max1);
//Displaying Reconstructed Image
IplImage *dvImg;
CvSize dvSize; // size of output image
dvSize.width = idwt_output[0].size();
dvSize.height = idwt_output.size();
cout << idwt_output.size() << idwt_output[0].size() << endl;
dvImg = cvCreateImage( dvSize, 8, 1 );
for (int i = 0; i < dvSize.height; i++ ){
for (int j = 0; j < dvSize.width; j++ ){
if ( idwt_output[i][j] <= 0.0){
idwt_output[i][j] = 0.0;
}
((uchar*)(dvImg->imageData + dvImg->widthStep*i))[j] =
(char) ((idwt_output[i][j] / max1) * 255 ) ;
}
}
cvNamedWindow( "10% Coeff Reconstructed Image", 1 ); // creation of a visualisation window
cvShowImage( "10% Coeff Reconstructed Image", dvImg ); // image visualisation
cvWaitKey();
cvDestroyWindow("10% Coeff Reconstructed Image");
cvSaveImage("recon.bmp",dvImg);
// Case 2 : Only 2% of the largest coefficients are considered
// Output is the 1D DWT vector
int n_coef2= int (output.size()/ 50);
cout << n_coef2 << endl;
// Finding Threshold Value corresponding to n_coef1
vector<double> temp2;
for (unsigned int i =0; i < dwt_coef2.size(); i++) {
double tempval = abs(dwt_coef2[i]);
temp2.push_back(tempval);
}
double thresh2= 0.0;
findthresh(temp2,n_coef2,thresh2);
cout << "thresh" << thresh2 << endl;
// Reset coeffficients value depending on threshold value
for (unsigned int i =0; i < dwt_coef2.size(); i++) {
double temp = abs(dwt_coef2[i]);
if (temp < thresh2){
dwt_coef2.at(i)= 0.0;
}
}
// Finding IDWT
vector<vector<double> > idwt_output2(rows, vector<double>(cols));
idwt_2d( dwt_coef2,flag, nm, idwt_output2,length);
double max2;
maxval(idwt_output2,max2);
//Displaying Reconstructed Image
IplImage *dvImg2;
CvSize dvSize2; // size of output image
dvSize2.width = idwt_output2[0].size();
dvSize2.height = idwt_output2.size();
cout << idwt_output2.size() << idwt_output2[0].size() << endl;
dvImg2 = cvCreateImage( dvSize2, 8, 1 );
for (int i = 0; i < dvSize2.height; i++ ) {
for (int j = 0; j < dvSize2.width; j++ ) {
if ( idwt_output2[i][j] <= 0.0){
idwt_output2[i][j] = 0.0;
}
((uchar*)(dvImg2->imageData + dvImg2->widthStep*i))[j] =
(char) ((idwt_output2[i][j]/ max2) * 255 ) ;
}
}
cvNamedWindow( "2% Coeff Reconstructed Image", 1 ); // creation of a visualisation window
cvShowImage( "2% Coeff Reconstructed Image", dvImg2 ); // image visualisation
cvWaitKey();
cvDestroyWindow("2% Coeff Reconstructed Image");
cvSaveImage("recon2.bmp",dvImg2);
return 0;
}
```
This code decomposes a 512X512 grayscale image to 6 levels using db2 wavelets and uses a) only 10% coefficients and b) only 2% coefficients to reconstruct the image.
Input Image
![https://lh5.googleusercontent.com/-Y78s7sxlRcM/TlAItad_y4I/AAAAAAAAANM/fKDn4Um6Awo/lena512.jpg](https://lh5.googleusercontent.com/-Y78s7sxlRcM/TlAItad_y4I/AAAAAAAAANM/fKDn4Um6Awo/lena512.jpg)
DWT of Input Image
![https://lh6.googleusercontent.com/-un5jMZe5jWE/TlAIuMAx6cI/AAAAAAAAANQ/om0EtqX-mck/2dappxdwt.jpg](https://lh6.googleusercontent.com/-un5jMZe5jWE/TlAIuMAx6cI/AAAAAAAAANQ/om0EtqX-mck/2dappxdwt.jpg)
Image Approximation using only 10% coefficients
![https://lh6.googleusercontent.com/-wkhbPVWQk0g/TlAIsFBBL9I/AAAAAAAAANI/2BkdWP2mcgs/2dappxrecon.jpg](https://lh6.googleusercontent.com/-wkhbPVWQk0g/TlAIsFBBL9I/AAAAAAAAANI/2BkdWP2mcgs/2dappxrecon.jpg)
Image Approximation using only 2% coefficients.
![https://lh4.googleusercontent.com/-LyvXNI1CUGE/TlAIw0icqgI/AAAAAAAAANY/0PIQ6Gz5HDQ/2dappxrecon2.jpg](https://lh4.googleusercontent.com/-LyvXNI1CUGE/TlAIw0icqgI/AAAAAAAAANY/0PIQ6Gz5HDQ/2dappxrecon2.jpg)