WAVELIB

Wavelet Transform Implementation in ANSI C

http://rafat.github.io/wavelib

Author : Rafat Hussain

Contact : rafat.hsn@gmail.com

mailto:rafat.hsn@gmail.com

01.

02.

e3.

04.

05.

66.

07.

Table Of Contents

Introduction

Usage : How To Integrate wavelib In Your Code
Wavelet Objects, Parameters And Functions
Wavelet Transform Class (wpt) And Functions
Wavelet Tree Decomposition (wtree)

Discrete Wavelet Packet Transform (dwpt)

Continuous Wavelet Transform

10

18

22

26

01 Introduction

Wavelib is an ANSI C implementation of decimated and undecimated 1D Fast Discrete
Wavelet Transforms. Wavelet Packet Transform and Tree Decomposition have also been
added to the package.

Discrete Wavelet Transform Methods Implemented

DWT/IDWT A decimated Discrete Wavelet Transform implementation using implicit
signal extension and up/downsampling so it is a fast implementation. A FFT based
implementation is optional but will not be usually needed. Both periodic and
symmetric options are available.

SWT/ISWT Stationary Wavelet Transform. It works only for signal lengths that are
multiples of 27J where J is the number of decomposition levels. For signals of
other lengths see MODWT implementation.

MODWT/IMODWT Maximal Overlap Discrete Wavelet Transform is another undecimated
transform. It is implemented for signals of any length but only orthogonal
wavelets (Daubechies, Symlets and Coiflets) can be deployed. This implementation
is based on the method laid out in "Wavelet Methods For Wavelet Analysis" by
Donald Percival and Andrew Walden.

Discrete Wavelet Packet Transform Methods Implemented

WTREE A Fully Decimated Wavelet Tree Decomposition. This is a highly redundant
transform and retains all coefficients at each node. This is not recommended for
compression and denoising applications.

DWPT/IDWPT Is a derivative of WTREE method which retains coefficients based on
entropy methods. This is a non-redundant transform and output length is of the
same order as the input.

How To Obtain The Library

Git Repository

git clone https://code.google.com/p/ctsa/

or

git clone git://git.code.sf.net/p/ctsa/code ctsa-code

|
=

Or Download Zip File From

- 0Or -

License : BSD 3 Clause

https://sourceforge.net/projects/optimc/files/
https://sourceforge.net/projects/optimc/files/
https://sourceforge.net/projects/optimc/files/

02 Usage : How To Integrate WAVELIB In Your Code

CMAKE Users : Holger Nahrstaedt (https:/github.com/holgern) recently added cmake build system
and unit testing to this project. The build of this project is now straight-forward if you are a cmake
user. Fo example, on a *nix system a simple “cmake .” followed by “make” will build the wavelib
library and the unit test executable in the Bin folder. If you don't use cmake then you may want to read
the rest of this chapter.

WAVELIB code consists of C source files and their corresponding headers. You can
directly use these files in your code by including "wavelib.h" header in your
code. Just make sure that all the files are in the same folder and your program
can "see" them. For example, something like

gcc -Wall -c *.c

will work with GNU gcc compiler. It will build object files of all the files in
the /src folder and you can link your project against these object files. This is
more straightforward if you are using one of the modern IDEs as you can just plug
all the files in your code and link "wavelib.h" to your project files. The IDE
will do the rest. If you are an expert programmer then you may want to skip the
rest of this section.

Building Shared and Static Libraries on Linux

A Simple Static Library

If you are using GNU GCC compiler then something like

gcc -c *.c

will build the object files in the src folder. You can then package the object
files in a libwavelib.a static library package using

ar rcs libwavelib.a *.o

A Simple Shared Library

gcc -fPIC -c *.c

gcc -shared -W1,-soname,libwavelib.so.1 -o libwavelib.so.1.0 *.o

You may want to move lipwavelib.so0.1.0 to a separate folder before creating

https://github.com/holgern

symlinks.

In -sf libwavelib.so.1.0 libwavelib.so

In -sf libwavelib.so.1.0 libwavelib.so.1

If your folder is not on the path then you will have to export the path before
executing your program.

export LD_LIBRARY_PATH=/wavelibFOLDERLOCATION/

Some useful links.

http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

http://codingfreak.blogspot.com/2010/01/creating-and-using-static-libraries-
in.html

http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-one-
static-libraries/

http://www.techytalk.info/c-cplusplus-library-programming-on-1linux-part-two-
dynamic-libraries/

Building Shared and Static Libraries on Windows

Use IDE to build the libraries

I am mentioning this approach as most Windows programmers use one or more IDEs for
their programming. All modern IDEs can create static and DLLs from source codes.
eg., In Visual Studio you start out by creating an empty project, then by adding
all the source and header files followed by "Build Solution".

Link - http://msdn.microsoft.com/en-us/library/ms235636.aspx

http://msdn.microsoft.com/en-us/library/ms235627.aspx

It is equally straightforward to create libraries in Eclipse , Codeblocks and
other IDEs.

Working with Cygwin

A Static library (.a) build is identical to that with linux.

A Simple Static Library

If you are using GNU GCC compiler then something like

http://msdn.microsoft.com/en-us/library/ms235627.aspx
http://msdn.microsoft.com/en-us/library/ms235636.aspx
http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-two-dynamic-libraries/
http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-two-dynamic-libraries/
http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-one-static-libraries/
http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-one-static-libraries/
http://codingfreak.blogspot.com/2010/01/creating-and-using-static-libraries-in.html
http://codingfreak.blogspot.com/2010/01/creating-and-using-static-libraries-in.html
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

will build the object files in the src folder. You can then package the object
files in a libwavelib.a static library package using

A Simple DLL in Cygwin

This will build a simple standalone DLL.

Check this link for more options, specially if you want to build the DLL as an
export library.

http://cygwin.com/cygwin-ug-net/dll.html

~

http://cygwin.com/cygwin-ug-net/dll.html

03 Wavelet Object, Parameters and Functions

wave_object wave_init(char* wname); // Initialize wave object

wname - is the name of the wavelet. See below.

Available Wavelets

Haar : haar
Daubechies : db1,db2,.., ,db36

Biorthogonal : biorl.1 ,biorl.3 ,biorl.5 ,bior2.2 ,bior2.4 ,bior2.6 ,bior2.8 ,bior3.1 ,bior3.3 ,bior3.5
,bior3.7 ,bior3.9 ,bior4.4 ,bior5.5 ,bior6.8

Coiflets : coifl,coif2,coif3,coif4,coif5,..,coif17

Reverse Biorthogonal : rbiorl.1 ,rbiorl.3 ,rbiorl.5 ,rbior2.2 ;rbior2.4 ,rbior2.6 ,rbior2.8 ;rbior3.1
,rbior3.3 ,rbior3.5 ,rbior3.7 ,rbior3.9 ,rbior4.4 ,rbior5.5 ,rbior6.8

Symmlets: sym2,........ , sym20 (Also known as Daubechies' least asymmetric orthogonal wavelets and
represented by the alphanumeric la)

wave Object Parameters

char wname; // Wavelet Name

int filtlength;// Length of filters. They are of identical length and may be
zeropadded to the same length when they are not.

int 1lpd len;// Length of Low Pass Decomposition Filter

int hpd_len;// Length of High Pass Decomposition Filter

int 1lpr_1len;// Length of Low Pass Reconstruction Filter

int hpr_len;// Length of High Pass Reconstruction Filter

double *1pd; //Low Pass Decomposition Filter

double *hpd; //High Pass Decomposition Filter

double *1pr; //Low Pass Reconstruction Filter

double *hpr; //High Pass Reconstruction Filter

Print wave summary

wave_summary(wave_object object);

Free wave Object

04 Wavelet Transform Class (wt) and Functions

wt Initialization

Wavelet Transform Execution

Inverse Wavelet Transform Execution

wt Object Parameters

10

Accessing DWT output

1D vector wt->output stores Output of Discrete Wavelet Transform. It stores
coefficients in following format:

where A(J) is the approximation coefficient vector at the Jth level while D(n) are
the detail coefficient vectors at the nth level. wt->length contains the lengths
of corresponding vectors. Last entry of the length vector is the length of the
original signal.

wt Functions

Example 1 : DWT/IDWT

dwt(wt, inp);// Perform DWT

//DWT output can be accessed using wt->output vector. Use wt_summary to
find out how to extract appx and detail coefficients

for (i = 0; i1 < wt->outlength; ++i) {
printf("%g ",wt->output[i]);
}

idwt(wt, out);// Perform IDWT (if needed)

// Test Reconstruction

for (i = 0; i < wt->siglength; ++i) {
diff[i] out[i] - inp[i];

}

printf("\n MAX %g \n", absmax(diff, wt->siglength)); // If Reconstruction
succeeded then the output should be a small value.

wt_summary(wt);// Prints the full summary.
wave_free(obj);
wt_free(wt);

free(inp);
free(out);
free(diff);
return 0;

1ib -0 d

0.000467898 0. 0005

-0. 010597
0.032883,-0. 010!
3,0.0308414,0.187035,-0. 0279838 0881,0.714847,-0.

signal exten:

convolutional method

Nunber of Decomposition

Length of Input signal
th of W output
: output
Fici
output[0]

Length
outpu Length
output[145] Length

13

Example 2 : SWT/ISWT

swt(wt, inp);// Perform SWT
//SWT output can be accessed using wt->output vector. Use wt_summary to
find out how to extract appx and detail coefficients
for (1 = 0; i < wt->outlength;
printf("%g ",
}

iswt(wt, out);// Perform ISWT (if needed)
// Test Reconstruction

++i) {
wt->output[i]);

for (1 = 0; i < wt->siglength;
diff[i] = out[i]
}

printf("\n MAX %g \n", absmax(diff, wt->siglength));// If Reconstruction
succeeded then the output should be a small value.

++1) {
- inp[i];

wt_summary(wt);// Prints the full summary.

wave_free(obj);
wt_free(wt);

free(inp);
free(out);
free(diff)
return 0;

-22.217 5757

-4.17077

5. 7 71 R 84330 <27 525,87 -4885 4092 -26.41. 95 -
~0. 0000 o1 001 00153796 -0 :1:1) 0. 0. 00: n 0515 . 0017 10,0014
9.001502 :4 . 00399515 0. 0. 3 0 oo a 0. DUE’D’44 o -JD& 6 00799041 9 0
D 10* -0.001 “o. - 332 26 030759 825 3*533 6251 -0. -0. 1 164
0" 00335756 0.
o077 0.

4
nnmz“ -

26.3825
3189 -0.
01

0. DDD
209330 0;
20567996

1 -0, 002
. 0344184 C

[0,0,0,0,
[0,0,0,0,
[-0.013810

et Transform :
[signal extension : p
lconvolutional method : dir
number of Decomposition L
Length of Input signal 256
Length of wT output vector 512

uaveler coefficients are contai

Approxination coefficient
T1 A outputlo] Leng

nts
S : output[256

home /wavelib/test

15

599
03 0. 02!
00000
00:

ned in

jth

ength : 256

0.0194278
57670 020"

,0,00212132 o
o

867

-0.0718155,0.
7,0,0,0,0]
0,0,0,0]

-0.0718155

: output

.03472
000233143 0;

48,0.

. 0718155, -0.

0718155,-0.

0. 00905097
0.000353553

781353 0.0278954
3 -0.00905097 -0,
0.00749533

0.¢
0.00334108 0.00363928 0.

927,0.0524806,0.041432,

. 0524806, 0. 041432

0041

0138107]

01381071

20729 5178
5 -Juum.mv
7 0. 005 005

3013 0. 67

0.000494975

0,0344184 0.
oo

00019
o 0o 0083085 .
71

oy
S o bas0sa34 0 008

382808 0.213882
uuaa*uar 0. 0000!
20100499 0.

00 00
0-0010!
Bi13355 455

Example 3 : MODWT/IMODWT

modwt (wt, inp);// Perform MODWT
//MODWT output can be accessed using wt->output vector

find out how to extract appx and detail coefficients

Use wt_summary to

4

for (i = 0; i1 < wt->outlength; ++i) {
printf("%g ",wt->output[i]);

}

imodwt (wt, out);// Perform ISWT (if needed)
// Test Reconstruction

for (i = 0; 1 < wt->siglength; ++i) {
diff[i] = out[i] - inp[i];

}

printf("\n MAX %g \n", absmax(diff, wt->siglength));// If Reconstruction
succeeded then the output should be a small value.

wt_summary(wt);// Prints the full summary.

wave_free(obj);
wt_free(wt);

free(inp);
free(out);
free(diff)
return 0,

ib -0 modwttest

wavelet Name : dbs
wavelet Filters
[-0.0105974,0.032883,0. 0308414, -0. 187035, -0. 0279838, 0. 630881 ,0. 714847 , 0. 230376]
[-0.23027 0.0279838,0.187035,0. 0308414 ,-0. 032883, -0. 01050741
[0.230371 -0.0105974]
[-0. 0105974, -0. 032883 ,0. 0308414, 0. 187035, -0. 0279838, -0. 630881, 0. 714847 , -0.
29 18523 183902 ~18.2347 1510

0.714847,0. 0279838,-0.187035,0. 0308414, 0. 032883

187321 18,7022 156

08 e 3an .58 9545 3 - 425 -
e 1 18,557 -17.6564 -17,2997 -16 16 41 .89 4,136 -13.1465 -11 27 20, G5013 1. 2004
244 23. 95) 4944 12,2993 1,184 -4, 71575 598 “0.131801 -0 530473 0. 18613 3 510, 173548 0.109095 10, 0131995 -0, 0233374 0,03 54993 00171509 ~0. 0271485 0. 542006
0. 00 0.00270721 -0.0013! 000685724 0. 00952387 0. 0123401 0. o1 0. 0151 0.0208321 0.0222146 0.

0. 251354 0. 50485 02905 -5. 5223

-0. 00451101 0488 0. 0.
288 0.1 C 7 0.373944 r*u.x 4.1; 2. 1 0.600655 -0.4: 434 9879
2 - 787 50, 0053054 4350, 00421507 0. Dma?(
0 55 —0.174992

3.150 6 94918 63:
0177364 -0, 007717 N 60: 16 . N
232525 -0. 0761906 -0. 0757: . 058! 207093036 20, 0674141 0.0733333 0. csaz?us %.97%3
0198207 ~0.000129747 3 3 3 0000527233 0. 0007 1837

a1,
u??mn -0.11326
1.9052; 54°1.16859
32 11 -0.000286805 9 6
7_0.00161967 0. 00154099 0. D 90070143 0. 000284¢ 00111023 5.1945 635 36474 31642 . 001 H
2. 000806016 -4 39 . 3 .0215 3 0.211207 0. umaur 0.00157859 0. 01 0. 5007 1,‘4 . 00: 0. 3 0.00135137 0. 0011 CEGICH 00
5006300375 0. 000334336 1 476416-05 000101806 0. -0:000 ~0.000342303 -0.00033342 D uﬂnu 173 -0. 3 -0. 0749523 1 8. 0398043 0.
-0.00313601 -0.0047447 - 2551836320 015 7077 -0.03 0993520119509 20 233635 J0.473734 559393 7828 2o iE08e -0.395065 J0, 23078 1. 143
5 5 3 0145155 0. Lo 096704 0. 00138803 -0.00070503 -0.000441671 ~O. 50, 108488 0. 000980584 0.0 4 0.00390736 —0.00132205 ¢
48 -0,00905062 0. 0109 84683 _-0.147 273294 0, 982639 0,509 713107 J0.0120495 _0.00954008 _0.0081742

0.
-0.0023 ‘JUJL;UJ; -0.00619 Sorada 091 729 -0,0132204 -0
0.00559911 129 00177459 -000146256. -0. 00124672 <0. 0010123 0.

wavelet name :
Eilt
[-0.0105074,0.032883,0. 0308414, -0.187025,-0. 0279838, 0.
30378,0. 714847, 51,-0.0279838,0. 187035, 0. 0308414, -0. 032883, -0. 0105974]
-0.187025,0. 0308414, 0.022883,-0. 0105074]

0881,0.714847,0.230378]

0.230378,0.714847,0. 0279838,
[-0.0105974,-0.032883,0. 0308414,0.187035,-0. 0279838, -0. 630881,0. 714847, -0. 2303
Transform : modw

ion
convolutional wethod : dir
INumber sition Levels 2
Length of Input signal 177
Length of wT output vector
wav coefficients are contained in vector : output

pproxination coeft
el 1 Pt [6] Length : 1

petail coefficient:
Level 1 A Sutput[177] Length :
output[354] Length

17

05 Wavelet Tree Decomposition (wtree)

wtree initialization

wtree Execution

wtree object Parameters

[Wavelet Tree Full decomposition (J =2)]

wtree Functions

Full Wavelet Tree decomposition is a highly redundant transformation and retains
coefficients at every decomposition node. Following functions are useful in
extracting coefficients.

1. wtree_summary : prints out how each node is stored in the output vector and how
you can access it. This is a print to screen command and is not recommended to be

19

used in applications where speed is the primary concern.

2. getWTREENodelength & getWTREECoeffs : will give you a.) the length of the
nodes at each level and b.) the node coefficients.

wt->output stores node coefficents beginning with Jth level from left to right.
For a two level decomposition, as shown in the figure, the coefficients are stored

as -

Example wtree

free(inp);
free(oup);
wave_free(obj)
wtree_free(wt);
return 0;

~-

|8 gcc -Mall -L../static/ wtreetest.c -lwavelib -o wtreetest

C avelib/test
- [wtreetest

avelet Name : db3

avelet Filters

[1pd : [0.0352263,-0.0854413,-0.135011,0.459878,0.806892,0.332671]
Ihpd : [-.332671,0.806892,-0.459878, -0.135011,0.0854413,0.0352263]

[1pr = [0.332671,0.806892,0.459878,-0.135011, -0.0854413,0.0352263]

hpr = [0.0352263,0.0854413,-0.135011, -0.459878,0.806892, -0.332671]

avelet Transform : dwt
Jsignal Extension : sym

number of Decomposition Levels 3
Length of Input signal 147
Length of WF Output Vector 488

avelet Coefficients are contained in vector : owtput

s
output[336] Length
output[412] Length
output[176] Length
output[216] Length
output[256] Length
output[296] Length
output[e] Length
output[22] Length
output[4a] Length
output[66] Length
output[88] Length
output[110] Length
output[132] Length

: output[154] Length

22
.27682e-10 -146.11 -1391.51 958.693 615.247

Node [3 5] Coefficients :
5.98567 5.50688 -0.925983 0.0956382 -2.315962-10

-2.3133e-10 -2.32311e-10 -2.30112-10 -2.308972-10 -2.3205e-10 -2.28244e-10 -2.31941e-10 -2.30826e-10 -2.303e-10 -2.30504e-10 -2.327072-10 -2.29109-10 -

21

06 Discrete Wavelet Packet Transform (dwpt)

wtree initialization

dwpt Execution

idwpt Execution

dwpt object parameters

>nodes. See the example below. wt->nodes = 3 , the nodeindex vector is
[2,0,2,1,1,1] where {2,0},{2,1} and {1,1} are the nodes in the pruned tree.

int *coeflength;// Size J+1 Vector containing lengths of Coefficients at each
level. All coefficients at each level have the same length. The first value is
the length of the signal (siglength). The last value is the length at the Jth
level of decomposition.

double *output; // DWPT Output Vector of size outlength

{1,1}‘

{2,0}‘ {2,1}‘

Discrete Wavelet Packet Transform (J =2)
Using Best Basis Search Algorithm

DWPT Best Basis Search Algorithm

DWPT best basis search algorithm is an entropy based algorithm as described in
Ripples in Mathematics: The Discrete Wavelet Transform by Jensen and la Cour-
Harbo, Springer Verlag, 2001. The program accepts four entropy options - shannon,
threshold, norm and logenergy. These values can be set using setDWPTEntropy
function and the default value is “shannon®. This selected entropy is used to
calculate the cost function associated with every node and a best basis is
selected based on the cost function. Unlike wtree, the wpt object retains only the
selected nodes and is a non-redundant transform suitable for compression and
denoising applications.

23

dwpt functions

The coefficient access is exactly the same way as explained in the wtree chapter.

Example dwpt

J = 4;

wt = wpt_init(obj, N, J);// Initialize the wavelet transform Tree object

setDWPTExtension(wt, "per");// Options are "per" and "sym". Symmetric is the
default option

setDWPTEntropy(wt, "logenergy", 0);

dwpt(wt, inp); // Discrete Wavelet Packet Transform
idwpt(wt, oup); // Inverse Discrete Wavelet Packet Transform

for (1 = 0; i < N; ++i) {
diff[i] = (inp[i] - oup[i])/inp[i];
3

wpt_summary(wt); // Tree Summary

printf("\n MAX %g \n", absmax(diff, wt->siglength)); // If Reconstruction
succeeded then the output should be a small value.

free(inp);
free(oup);
free(diff);
wave_free(obj);
wpt_free(wt);
return 0;

/home fwavelib/test
11 -L../static/ dupttest.c -lwavelib -o dwpttest

/home /wavelib/test

avelet Name : db4

avelet Filters

: [-0.0105974,0.032883,0.0308414, -0.187035, -0.0279838,0. 630881,0.714847,0.230378]

: [-0.230378,0.714847, -0. 630881, -0.0279838, 0. 187035,0.0308414, -0.032883 , -0.0105974]
: [0.230378,0.714847,0.630881, -0. 0279838, -0.187035,0.0308414,0. 032883, -0.0105974]

: [-0.0105974,-0.032883,0.0308414,0. 187035, -0.0279838, -0.630881,0. 714847, -0.230378]

signal Extension : per
Entropy : logenergy

Mumber of Decomposition Levels 4

Mumber of Active Nodes 11

Length of Input Signal 811

Length of WT Output Vector 815

javelet Coefficients are contained in vector : output

oefficients Access

Node 4 @ Access : output[@] Length : 51
Node 4 1 Access : output[51] Length :
pode 4 2 Access : output[102] Length :
Mode 4 3 Access : output[153] Length :
Mode 4 4 Access : output[204] Length :
ode 4 5 Access : output[255] Length :
ode 4 8 Access : output[3@6] Length :
pode 4 9 Access : output[357] Length :
pode 3 3 Access : output[488] Length :
Mode 3 5 Access : output[516] Length :
Mode 2 3 Access : output[612] Length :

MAX 1.4636e-89

HOM /home /wavelib/test

25

07 Continuous Wavelet Transform (cwt)

cwt initialization

“morl” : Morlet Family of Wavelets accept real, positive parameter values(“param”). Value 6.0 is used
in the example and values between 4.0-6.0 are typically used.

“paul” : Paul Wavelets accept positive integer values <= 20. Default Value is 4.

“dog” : Derivative of Gaussian Wavelets accepts positive even integer values. Param = 2 is the
Mexican Hat Wavelet.

cwt Execution

icwt Execution

N
(@)]

cwt object parameters

Setting CWT Scale Vector

There are two ways of setting Scale Parameters. The first method is straightforward and should be used
if the scales are linear or power-of-N.

The cwt_object needs to initialized first. sO is the smallest scale, while dj is the separation between
scales. Dj can also be seen as a measure of resolution which is calculated as dj = 1.0 / Number of
subscales so smaller value of dj corresponds to higher resolution within a scale. type accepts
“pow”/”power” or “lin”/”linear” as input values, power is the base of power if “pow”/”power’ is
selected and is ignored if the input is “lin”. Power of N scale calculation.

N
~

Linear Scale calculation

Custom Scale vector can be set using.

In this case the vector scale of size J is input by the user.
Inverse CWT and Approximate Reconstruction

The approximate reconstruction is achieved using the delta method suggested by Daubechies and used
by Terrence and Compo in their CWT implementation (See the references). This implementation
explicitly calculates Cdelta, instead of using interpolation tables, every time icwt is calculated. There is
a higher computation cost associated with this method but it should give better approximation if proper
s0 and J are selected. Anything under 0.01 is usually acceptable. Use a smaller sO and larger J if the
RMS reconstruction error is > 0.01.

Example cwt

28

References

Compo, G P and Torrence, C, 1998, A Practical Guide to Wavelet Analysis, Bulletin of The American
Meteorological Society,79,1, 61-78

Bishop, M, Continuous Wavelet Transform Reconstruction Factors for Selected Wavelets.
Daubechies, 1., 1992, Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics.

Farge, M., 1992, Wavelet Transforms and Their Applications to Turbulence, Annual Review of Fluid
Mechanics, 24, 395-457

30

	Wavelet Transform Implementation in ANSI C

